Concurrent overexpression of ornithine decarboxylase and spermidine/spermine N(1)-acetyltransferase further accelerates the catabolism of hepatic polyamines in transgenic mice.
نویسندگان
چکیده
We have generated a hybrid transgenic mouse line overexpressing both ornithine decarboxylase (ODC) and spermidine/spermine N(1)-acetyltransferase (SSAT) under the control of the mouse metallothionein (MT) I promoter. In comparison with singly transgenic animals overexpressing SSAT, the doubly transgenic mice unexpectedly displayed much more striking signs of activated polyamine catabolism, as exemplified by a massive putrescine accumulation and an extreme reduction of hepatic spermidine and spermine pools. Interestingly, the profound depletion of the higher polyamines in the hybrid animals occurred in the presence of strikingly high ODC activity and tremendous putrescine accumulation. Polyamine catabolism in the doubly transgenic mice could be enhanced further by administration of zinc or the polyamine analogue N(1),N(11)-diethylnorspermine. In tracer experiments with [(14)C]spermidine we found that, in comparison with syngenic animals, both MT-ODC and MT-SSAT mice possessed an enhanced efflux mechanism for hepatic spermidine. In the MT-ODC animals this mechanism apparently operated in the absence of measurable SSAT activity. In the hybrid animals, spermidine efflux was stimulated further in comparison with the singly transgenic animals. In spite of a dramatic accumulation of putrescine and a profound reduction of the spermidine and spermine pools, only marginal changes were seen in the level of ODC antizyme. Even though the hybrid animals showed no liver or other organ-specific overt toxicity, except an early and permanent loss of hair, their life span was greatly reduced. These results can be understood from the perspective that catabolism is the overriding regulatory mechanism in the metabolism of the polyamines and that, even under conditions of severe depletion of spermidine and spermine, extremely high tissue pools of putrescine are not driven further to replenish the pools of the higher polyamines.
منابع مشابه
Transgenic mice with activated polyamine catabolism due to overexpression of spermidine/spermine N1-acetyltransferase show enhanced sensitivity to the polyamine analog, N1, N11-diethylnorspermine.
We have recently generated transgenic mice in which polyamine catabolism has been activated by overexpressing the rate-limiting enzyme of polyamine catabolism, spermidine/spermine N1-acetyltransferase (SSAT). These animals have now been tested for their sensitivity to the polyamine analog N1,N11-diethylnorspermine (DENSPM), which is currently undergoing Phase I clinical trial. The analog is kno...
متن کاملTransgenic Mice with Activated Polyamine Catabolism due to Overexpression of Spermidine/Spermine N-Acetyltransferase Show Enhanced Sensitivity to the Polyamine Analog, N,N-Diethylnorspermine
We have recently generated transgenic mice in which polyamine catabolism has been activated by overexpressing the rate-limiting enzyme of polyamine catabolism, spermidine/ spermine N-acetyltransferase (SSAT). These animals have now been tested for their sensitivity to the polyamine analog N,N-diethylnorspermine (DENSPM), which is currently undergoing Phase I clinical trial. The analog is known ...
متن کاملPolyamines and neoplastic growth.
Studies over many years have suggested that increased polyamine synthesis may be necessary for neoplastic growth. This review summarizes recent work on the regulation of putrescine production both de novo and via the degradation of higher polyamines and provides a summary of studies using transgenic mice in which the levels of proteins that regulate these processes (L-ornithine decarboxylase, a...
متن کاملTransgenic animals modelling polyamine metabolism-related diseases.
Cloning of genes related to polyamine metabolism has enabled the generation of genetically modified mice and rats overproducing or devoid of proteins encoded by these genes. Our first transgenic mice overexpressing ODC (ornithine decarboxylase) were generated in 1991 and, thereafter, most genes involved in polyamine metabolism have been used for overproduction of the respective proteins, either...
متن کاملCharacterization of a transgenic mouse line over-expressing the human ornithine decarboxylase gene.
We have produced several transgenic mouse lines over-expressing the human ornithine decarboxylase (ODC) gene. We have now characterized one of the transgenic lines as regards the tissue accumulation of the polyamines and the activities of their metabolizing enzymes. Among the tissues analysed, the polyamine pattern was most strikingly changed in testis and brain of the transgenic animals. ODC a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 358 Pt 2 شماره
صفحات -
تاریخ انتشار 2001